Deterministic Approximate Counting of Depth-2 Circuits

نویسندگان

  • Michael Luby
  • Boban Velickovic
  • Avi Wigderson
چکیده

We describe deterministic algorithms which for a given depth-2 circuit $F$ approximate the probability that on a random input $F$ outputs a specific value $\alpha$. Our approach gives an algorithm which for a given $GF[2]$ multivariate polynomial $p$ and given $\varepsilon >0$ approximates the number of zeros of $p$ within a multiplicative factor $1+ \varepsilon$. The algorithm runs in time $exp(exp(O({\sqrt{log(n/\varepsilon)}))$, where $n$ is the size of the circuit. We also obtain an algorithm which given a DNF formula $F$ and $\varepsilon >0$ approximates the number of satisfying assignments of $F$ within a factor of $1+\varepsilon$ and runs in time $exp(O(log(n/\varepsilon))^4))$.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth Reduction for Circuits with a Single Layer of Modular Counting Gates

We consider the class of constant depth AND/OR circuits augmented with a layer of modular counting gates at the bottom layer, i.e AC◦MODm circuits. We show that the following holds for several types of gates G: by adding a gate of type G at the output, it is possible to obtain an equivalent probabilistic depth 2 circuit of quasipolynomial size consisting of a gate of type G at the output and a ...

متن کامل

Lower Bounds for Padded Sorting and Approximate Counting

We examine the relationship between running time and error of parallel sorting algorithms. This is done by applying Hastad's main lemma to relate the size depth and error of simple circuits, that sort an input of 0's and 1's. As a consequence, we obtain lower bounds for approximate counting as well.

متن کامل

Quantum Circuits with Unbounded Fan-out

We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed basis (denoted by QNCf ) can approximate with polynomially small error the following gates: parity, mod[q], And, Or, majority, threshold[t], exact[q], and counting. Classically, we need logarithmic depth even if we can use unboun...

متن کامل

Deterministic Approximate Counting for Degree-$2$ Polynomial Threshold Functions

We give a deterministic algorithm for approximately computing the fraction of Boolean assignments that satisfy a degree-2 polynomial threshold function. Given a degree-2 input polynomial p(x1, . . . , xn) and a parameter > 0, the algorithm approximates Prx∼{−1,1}n [p(x) ≥ 0] to within an additive ± in time poly(n, 2 ). Note that it is NP-hard to determine whether the above probability is nonzer...

متن کامل

A Satisfiability Algorithm for Depth Two Circuits with a Sub-Quadratic Number of Symmetric and Threshold Gates

We consider depth 2 unbounded fan-in circuits with symmetric and linear threshold gates. We present a deterministic algorithm that, given such a circuit with n variables and m gates, counts the number of satisfying assignments in time 2 n−Ω (( n √ m·poly(logn) )a) for some constant a > 0. Our algorithm runs in time super-polynomially faster than 2n if m = O(n2/ logb n) for some constant b > 0. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993